Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26.025
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731933

Despite the promising applications of the use of quantum dots (QDs) in the biomedical field, the long-lasting effects of QDs on the cell remain poorly understood. To comprehend the mechanisms underlying the toxic effects of QDs in yeast, we characterized defects associated with receptor-mediated endocytosis (RME) as well as pinocytosis using Saccharomyces cerevisiae as a model in the presence of cadmium selenide/zinc sulfide (CdSe/ZnS) QDs. Our findings revealed that QDs led to an inefficient RME at the early, intermediate, and late stages of endocytic patch maturation at the endocytic site, with the prolonged lifespan of GFP fused yeast fimbrin (Sac6-GFP), a late marker of endocytosis. The transit of FM1-43, a lipophilic dye from the plasma membrane to the vacuole, was severely retarded in the presence of QDs. Finally, QDs caused an accumulation of monomeric red fluorescent protein fused carbamoyl phosphate synthetase 1 (mRFP-Cps1), a vacuolar lumen marker in the vacuole. In summary, the present study provides novel insights into the possible impact of CdSe/ZnS QDs on the endocytic machinery, enabling a deeper comprehension of QD toxicity.


Cadmium Compounds , Endocytosis , Quantum Dots , Saccharomyces cerevisiae , Selenium Compounds , Sulfides , Zinc Compounds , Quantum Dots/toxicity , Quantum Dots/chemistry , Endocytosis/drug effects , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Cadmium Compounds/toxicity , Selenium Compounds/toxicity , Sulfides/toxicity , Sulfides/metabolism , Zinc Compounds/toxicity , Vacuoles/metabolism , Vacuoles/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Cell Membrane/metabolism , Cell Membrane/drug effects
2.
Drug Dev Res ; 85(3): e22194, 2024 May.
Article En | MEDLINE | ID: mdl-38704828

The aim the present study was to investigate the impact of novel pentavalent organobismuth and organoantimony complexes on membrane integrity and their interaction with DNA, activity against Sb(III)-sensitive and -resistant Leishmania strains and toxicity in mammalian peritoneal macrophages. Ph3M(L)2 type complexes were synthesized, where M = Sb(V) or Bi(V) and L = deprotonated 3-(dimethylamino)benzoic acid or 2-acetylbenzoic acid. Both organobismuth(V) and organoantimony(V) complexes exhibited efficacy at micromolar concentrations against Leishmania amazonensis and L. infantum but only the later ones demonstrated biocompatibility. Ph3Sb(L1)2 and Ph3Bi(L1)2 demonstrated distinct susceptibility profiles compared to inorganic Sb(III)-resistant strains of MRPA-overexpressing L. amazonensis and AQP1-mutated L. guyanensis. These complexes were able to permeate the cell membrane and interact with the Leishmania DNA, suggesting that this effect may contribute to the parasite growth inhibition via apoptosis. Taken altogether, our data substantiate the notion of a distinct mechanism of uptake pathway and action in Leishmania for these organometallic complexes, distinguishing them from the conventional inorganic antimonial drugs.


Antimony , Antiprotozoal Agents , Cell Membrane , Drug Resistance , Organometallic Compounds , Antimony/pharmacology , Antimony/chemistry , Animals , Organometallic Compounds/pharmacology , Mice , Cell Membrane/drug effects , Antiprotozoal Agents/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Leishmania/drug effects , DNA, Protozoan , Leishmania infantum/drug effects , Leishmania infantum/genetics , Mice, Inbred BALB C
3.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38744470

Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of Mycobacterium marinum, serving as a model for Mycobacterium tuberculosis Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the M. marinum-zebrafish embryo infection model and M. tuberculosis-infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of M. marinum resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.


Benzothiazoles , Drug Synergism , Mycobacterium marinum , Zebrafish , Animals , Benzothiazoles/pharmacology , Mycobacterium marinum/drug effects , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Cell Membrane Permeability/drug effects , Macrophages/drug effects , Macrophages/microbiology , Macrophages/metabolism , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Cell Membrane/metabolism , Cell Membrane/drug effects , Rifampin/pharmacology
4.
Eur J Med Chem ; 271: 116451, 2024 May 05.
Article En | MEDLINE | ID: mdl-38691892

The potent antibacterial activity and low resistance of antimicrobial peptides (AMPs) render them potential candidates for treating multidrug-resistant bacterial infections. Herein, a minimalist design strategy was proposed employing the "golden partner" combination of arginine (R) and tryptophan (W), along with a dendritic structure to design AMPs. By extension, the α/ε-amino group and the carboxyl group of lysine (K) were utilized to link R and W, forming dendritic peptide templates αRn(εRn)KWm-NH2 and αWn(εWn)KRm-NH2, respectively. The corresponding linear peptide templates R2nKWm-NH2 and W2nKRm-NH2 were used as controls. Their physicochemical properties, activity, toxicity, and stability were compared. Among these new peptides, the dendritic peptide R2(R2)KW4 was screened as a prospective candidate owing to its preferable antibacterial properties, biocompatibility, and stability. Additionally, R2(R2)KW4 not only effectively restrained the progression of antibiotic resistance, but also demonstrated synergistic utility when combined with conventional antibiotics due to its unique membrane-disruptive mechanism. Furthermore, R2(R2)KW4 possessed low toxicity (LD50 = 109.31 mg/kg) in vivo, while efficiently clearing E. coli in pulmonary-infected mice. In conclusion, R2(R2)KW4 has the potential to become an antimicrobial regent or adjuvant, and the minimalist design strategy of dendritic peptides provides innovative and encouraging thoughts in designing AMPs.


Anti-Bacterial Agents , Arginine , Microbial Sensitivity Tests , Tryptophan , Tryptophan/chemistry , Tryptophan/pharmacology , Animals , Arginine/chemistry , Arginine/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Mice , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Cell Membrane/drug effects , Dose-Response Relationship, Drug , Bacterial Infections/drug therapy , Humans , Escherichia coli/drug effects
5.
Eur J Med Chem ; 271: 116449, 2024 May 05.
Article En | MEDLINE | ID: mdl-38691893

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Herein, we designed and prepared a series of novel osthole amphiphiles 6a-6ad by mimicking the structures and function of antimicrobial peptides (AMPs). Antibacterial assays showed that osthole amphiphile 6aa strongly inhibited S. aureus and 10 clinical MRSA isolates with MIC values of 1-2 µg/mL, comparable to that of the commercial antibiotic vancomycin. Additionally, 6aa had the advantages of rapid bacteria killing without readily developing drug resistance, low toxicity, good membrane selectivity, and good plasma stability. Mechanistic studies indicated that 6aa possesses good membrane-targeting ability to bind to phosphatidylglycerol (PG) on the bacterial cell membranes, thereby disrupting the cell membranes and causing an increase in intracellular ROS as well as leakage of proteins and DNA, and accelerating bacterial death. Notably, in vivo activity results revealed that 6aa exhibits strong anti-MRSA efficacy than vancomycin as well as a substantial reduction in MRSA-induced proinflammatory cytokines, including TNF-α and IL-6. Given the impressive in vitro and in vivo anti-MRSA efficacy of 6aa, which makes it a potential candidate against MRSA infections.


Anti-Bacterial Agents , Coumarins , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Molecular Structure , Structure-Activity Relationship , Humans , Dose-Response Relationship, Drug , Mice , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis
6.
J Am Chem Soc ; 146(19): 12901-12906, 2024 May 15.
Article En | MEDLINE | ID: mdl-38701349

Cholesterol-rich membranes play a pivotal role in cancer initiation and progression, necessitating innovative approaches to target these membranes for cancer inhibition. Here we report the first case of unnatural peptide (1) assemblies capable of depleting cholesterol and inhibiting cancer cells. Peptide 1 self-assembles into micelles and is rapidly taken up by cancer cells, especially when combined with an acute cholesterol-depleting agent (MßCD). Click chemistry has confirmed that 1 depletes cell membrane cholesterol. It localizes in membrane-rich organelles, including the endoplasmic reticulum, Golgi apparatus, and lysosomes. Furthermore, 1 potently inhibits malignant cancer cells, working synergistically with cholesterol-lowering agents. Control experiments have confirmed that C-terminal capping and unnatural amino acid residues (i.e., BiP) are essential for both cholesterol depletion and potent cancer cell inhibition. This work highlights unnatural peptide assemblies as a promising platform for targeting the cell membrane in controlling cell fates.


Cholesterol , Peptides , Humans , Cholesterol/chemistry , Cholesterol/metabolism , Peptides/chemistry , Peptides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Proliferation/drug effects
7.
J Agric Food Chem ; 72(19): 10853-10861, 2024 May 15.
Article En | MEDLINE | ID: mdl-38708871

The purpose of this study was to investigate the antibacterial activity and mechanism of action of osthole against Listeria monocytogenes. The antibacterial activity of osthole was evaluated by determining the minimum inhibitory concentration (MIC) and growth curve. Cell morphology, membrane permeability, membrane integrity, bacterial physiology, and metabolism were explored using different methods to elucidate the mechanism of action of osthole. It was shown that the MIC of osthole against L. monocytogenes was 62.5 µg/mL and it inhibited the growth of L. monocytogenes effectively in a concentration-dependent manner. Scanning electron microscopy (SEM) images demonstrated morphology changes of L. monocytogenes, including rough surface, cell shrinkage, and rupture. It was found that extracellular conductivity and macromolecule content were increased significantly in the presence of osthole, indicating the disruption of cell membrane integrity and permeability. Laser confocal microscopy results supported the conclusion that osthole caused severe damage to the cell membrane. It was also noticed that osthole depleted intracellular adenosine triphosphate (ATP), inhibited Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity, and promoted the accumulation of intracellular reactive oxygen species (ROS), leading to cell death. This study suggests that osthole is a promising antibacterial agent candidate against L. monocytogenes, and it shows potential in the prevention and control of foodborne pathogens.


Anti-Bacterial Agents , Coumarins , Listeria monocytogenes , Microbial Sensitivity Tests , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coumarins/pharmacology , Coumarins/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism , Cell Membrane Permeability/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism
8.
Sci Rep ; 14(1): 10944, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740828

The cooling rate is a crucial factor in the process of freezing semen, influencing the overall freezing effectiveness. The height and time of fumigation can significantly impact the rate of cooling. Appropriate cooling rates can help minimize the formation of ice crystals in spermatozoa and reduce potential damage to them. Therefore, the aim of this study was to evaluate the effect of different fumigation heights and time for the cryopreservation of Hu ram semen. Experiments I-IV assessed the effect of semen cryopreservation by testing the post-thawed spermatozoa total motility (TM), progressive motility (PM) and kinetic parameters fumigated at distances of 2, 4, 6 and 8 cm for durations of 5, 10, 15 and 20 min, respectively. Based on the results of experiments I to IV, experiment V evaluated the effect of semen cryopreservation by testing the post-thawed spermatozoa TM, PM, kinetic parameters, plasma membrane integrity, acrosome integrity and reactive oxygen species (ROS) level fumigated at distances of 2, 4, 6 and 8 cm for duration of 20 min. The results indicated that fumigation at 2 cm for 20 min significantly (P < 0.05) improved spermatozoa TM, PM, mean angular displacement (MAD), plasma membrane integrity and acrosome integrity compared to other groups. Additionally, it significantly (P < 0.05) reduced spermatozoa ROS level compared to the 6 and 8 cm groups. In conclusion, fumigation for 20 min at a distance of 2 cm from the liquid nitrogen surface is the most suitable cooling method for the cryopreservation of Hu ram semen.


Cryopreservation , Reactive Oxygen Species , Semen Preservation , Semen , Sperm Motility , Spermatozoa , Cryopreservation/methods , Male , Semen Preservation/methods , Animals , Sheep , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/physiology , Semen/drug effects , Reactive Oxygen Species/metabolism , Fumigation/methods , Time Factors , Cell Membrane/drug effects , Acrosome/drug effects
9.
Acta Biochim Pol ; 71: 11999, 2024.
Article En | MEDLINE | ID: mdl-38721306

Candida glabrata is an important opportunistic human pathogen well known to develop resistance to antifungal drugs. Due to their numerous desirable qualities, antimicrobial lipopeptides have gained significant attention as promising candidates for antifungal drugs. In the present study, two bioactive lipopeptides (AF4 and AF5 m/z 1071.5 and 1085.5, respectively), coproduced and purified from Bacillus subtilis RLID12.1, consist of seven amino acid residues with lipid moieties. In our previous studies, the reversed phased-HPLC purified lipopeptides demonstrated broad-spectrum of antifungal activities against over 110 Candida albicans, Candida non-albicans and mycelial fungi. Two lipopeptides triggered membrane permeabilization of C. glabrata cells, as confirmed by propidium iodide-based flow cytometry, with PI uptake up to 99% demonstrating fungicidal effects. Metabolic inactivation in treated cells was confirmed by FUN-1-based confocal microscopy. Together, the results indicate that these lipopeptides have potentials to be developed into a new set of antifungals for combating fungal infections.


Antifungal Agents , Bacillus subtilis , Candida glabrata , Cell Membrane Permeability , Lipopeptides , Microbial Sensitivity Tests , Lipopeptides/pharmacology , Lipopeptides/chemistry , Lipopeptides/isolation & purification , Bacillus subtilis/drug effects , Candida glabrata/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Cell Membrane Permeability/drug effects , Humans , Cell Membrane/drug effects , Cell Membrane/metabolism
10.
Arch Microbiol ; 206(6): 251, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727840

The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.


Antifungal Agents , Biofilms , Candida albicans , Cell Membrane , Isothiocyanates , Oxidative Stress , Reactive Oxygen Species , Candida albicans/drug effects , Candida albicans/physiology , Biofilms/drug effects , Antifungal Agents/pharmacology , Isothiocyanates/pharmacology , Oxidative Stress/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Cell Cycle/drug effects , Hyphae/drug effects , Hyphae/growth & development , Ergosterol/metabolism
11.
J Phys Chem B ; 128(18): 4414-4427, 2024 May 09.
Article En | MEDLINE | ID: mdl-38690887

This study elucidated the mechanism of formation of a tripartite complex containing daptomycin (Dap), lipid II, and phospholipid phosphatidylglycerol in the bacterial septum membrane, which was previously reported as the cause of the antibacterial action of Dap against gram-positive bacteria via molecular dynamics and enhanced sampling methods. Others have suggested that this transient complex ushers in the inhibition of cell wall synthesis by obstructing the downstream polymerization and cross-linking processes involving lipid II, which is absent in the presence of cardiolipin lipid in the membrane. In this work, we observed that the complex was stabilized by Ca2+-mediated electrostatic interactions between Dap and lipid head groups, hydrophobic interaction, hydrogen bonds, and salt bridges between the lipopeptide and lipids and was associated with Dap concentration-dependent membrane depolarization, thinning of the bilayer, and increased lipid tail disorder. Residues Orn6 and Kyn13, along with the DXDG motif, made simultaneous contact with constituent lipids, hence playing a crucial role in the formation of the complex. Incorporating cardiolipin into the membrane model led to its competitively displacing lipid II away from the Dap, reducing the lifetime of the complex and the nonexistence of lipid tail disorder and membrane depolarization. No evidence of water permeation inside the membrane hydrophobic interior was noted in all of the systems studied. Additionally, it was shown that using hydrophobic contacts between Dap and lipids as collective variables for enhanced sampling gave rise to a free energy barrier for the translocation of the lipopeptide. A better understanding of Dap's antibacterial mechanism, as studied through this work, will help develop lipopeptide-based antibiotics for rising Dap-resistant bacteria.


Anti-Bacterial Agents , Daptomycin , Molecular Dynamics Simulation , Phospholipids , Daptomycin/pharmacology , Daptomycin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phospholipids/chemistry , Phospholipids/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Phosphatidylglycerols/chemistry , Hydrophobic and Hydrophilic Interactions , Cardiolipins/chemistry , Cardiolipins/metabolism
12.
Med Sci Monit ; 30: e942946, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698627

BACKGROUND Cryopreservation preserves male fertility, crucial in oncology, advanced age, and infertility. However, it damages sperm motility, membrane, and DNA. Zinc (Zn), an antioxidant, shows promise in improving sperm quality after thawing, highlighting its potential as a cryoprotectant in reproductive medicine. MATERIAL AND METHODS Gradient concentration of ZnSO4 (0, 12.5, 25, 50, and 100 µM) was added in the Glycerol-egg yolk-citrate (GEYC) cryopreservative medium as an extender. Alterations in sperm viability and motility parameters after cryopreservation were detected in each group. Sperm plasma membrane integrity (PMI), acrosome integrity (ACR), DNA fragment index (DFI), and changes in sperm mitochondrial function were examined, including: mitochondrial potential (MMP), sperm reactive oxygen species (ROS), and sperm ATP. RESULTS We found that 50 µM ZnSO4 was the most effective for the curvilinear velocity (VCL) and the average path velocity (VAP) of sperm after cryo-resuscitation. Compared to the Zn-free group, sperm plasma membrane integrity (PMI) was increased, DNA fragmentation index (DFI) was decreased, reactive oxygen species (ROS) was reduced, and mitochondrial membrane potential (MMP) was increased after cryorevival in the presence of 50 µM ZnSO4. CONCLUSIONS Zn ion is one of the antioxidants in the cell. The results of our current clinical study are sufficient to demonstrate that Zn can improve preserves sperm quality during cryopreservation when added to GEYC. The addition of 50 µM ZnSO4 increased curve velocity, mean path velocity, sperm survival (or plasma membrane integrity), and mitochondrial membrane potential while reducing ROS production and DNA breaks compared to GEYC thawed without ZnSO4.


Cryopreservation , Cryoprotective Agents , DNA Fragmentation , Membrane Potential, Mitochondrial , Reactive Oxygen Species , Semen Preservation , Sperm Motility , Spermatozoa , Zinc , Male , Cryopreservation/methods , Humans , Spermatozoa/drug effects , Spermatozoa/metabolism , Cryoprotective Agents/pharmacology , Reactive Oxygen Species/metabolism , Sperm Motility/drug effects , Semen Preservation/methods , Membrane Potential, Mitochondrial/drug effects , DNA Fragmentation/drug effects , Zinc/pharmacology , Zinc/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Semen Analysis , Cell Survival/drug effects , Adult , Mitochondria/drug effects , Mitochondria/metabolism , Acrosome/drug effects , Acrosome/metabolism , Freezing
13.
ACS Biomater Sci Eng ; 10(5): 2956-2966, 2024 May 13.
Article En | MEDLINE | ID: mdl-38593061

Bacteria experience substantial physical forces in their natural environment, including forces caused by osmotic pressure, growth in constrained spaces, and fluid shear. The cell envelope is the primary load-carrying structure of bacteria, but the mechanical properties of the cell envelope are poorly understood; reports of Young's modulus of the cell envelope of Escherichia coli range from 2 to 18 MPa. We developed a microfluidic system to apply mechanical loads to hundreds of bacteria at once and demonstrated the utility of the approach for evaluating whole-cell stiffness. Here, we extend this technique to determine Young's modulus of the cell envelope of E. coli and of the pathogens Vibrio cholerae and Staphylococcus aureus. An optimization-based inverse finite element analysis was used to determine the cell envelope Young's modulus from observed deformations. The Young's modulus values of the cell envelope were 2.06 ± 0.04 MPa for E. coli, 0.84 ± 0.02 MPa for E. coli treated with a chemical (A22) known to reduce cell stiffness, 0.12 ± 0.03 MPa for V. cholerae, and 1.52 ± 0.06 MPa for S. aureus (mean ± SD). The microfluidic approach allows examination of hundreds of cells at once and is readily applied to Gram-negative and Gram-positive organisms as well as rod-shaped and cocci cells, allowing further examination of the structural causes behind differences in cell envelope Young's modulus among bacterial species and strains.


Elastic Modulus , Escherichia coli , Staphylococcus aureus , Vibrio cholerae , Staphylococcus aureus/physiology , Staphylococcus aureus/drug effects , Vibrio cholerae/physiology , Escherichia coli/physiology , Escherichia coli/drug effects , Finite Element Analysis , Cell Membrane/physiology , Cell Membrane/drug effects , Cell Wall/drug effects
14.
Colloids Surf B Biointerfaces ; 238: 113892, 2024 Jun.
Article En | MEDLINE | ID: mdl-38581834

Receptor and ligand binding mediated targeted drug delivery systems (DDS) sometimes fail to target to tumor sites, and cancer cell membrane (CCM) coating can overcome the dilemma of immune clearance and nonspecific binding of DDS in vivo. In order to enhance the targeting ability and improve the anti-tumor effect, a dual targeting DDS was established based on U87MG CCM mediated homologous targeting and cyclic peptide RGD mediated active targeting. The DDS was prepared by coating RGD doped CCM onto doxorubicin (DOX) loaded liposomes. The homologous and active dual targeting ability endowed the DDS (RGD-CCM-LP-DOX) exhibited superior cancer cell affinity, improved tissue distribution and enhanced anti-tumor effects. In vivo pharmacodynamic studies revealed that RGD-CCM-LP-DOX exhibited superior therapeutic effect compared with homologous targeting CCM-LP-DOX and non-targetable LP-DOX injection. H&E staining, Ki 67 staining and TUNEL staining confirmed that RGD-CCM-LP-DOX not only increased anti-tumor efficacy, but also reduced tissue toxicity by changing the distribution in vivo. The experimental results showed that the RGD doped CCM camouflaged liposome DDS is a better choice for chemotherapeutics delivery.


Cell Membrane , Doxorubicin , Drug Delivery Systems , Liposomes , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Liposomes/chemistry , Animals , Humans , Mice , Cell Membrane/metabolism , Cell Membrane/drug effects , Cell Membrane/chemistry , Oligopeptides/chemistry , Mice, Inbred BALB C , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Mice, Nude , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Tissue Distribution , Drug Screening Assays, Antitumor
15.
Colloids Surf B Biointerfaces ; 238: 113909, 2024 Jun.
Article En | MEDLINE | ID: mdl-38599076

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy, which is characterized by high incidence and aggression with poor diagnosis and limited therapeutic opportunity. The innovative strategy for achieving precise NPC active-targeting drug delivery has emerged as a prominent focus in clinical research. Here, a minimalist cancer cell membrane (CCM) shielded biomimetic nanoparticle (NP) was designed for NPC active-targeting therapy. Chemotherapeutant model drug doxorubicin (DOX) was loaded in polyamidoamine (PAMAM) dendrimer. The PAMAM/DOX (PD) NP was further shielded by human CNE-2 NPC CCM. Characterization results verified that the biomimetic PAMAM/DOX@CCM (abbreviated as PDC) NPs had satisfactory physical properties with high DOX-loading and excellent stability. Cell experiments demonstrated that the CNE-2 membrane-cloaked PDC NPs presented powerful cellular uptake in the sourcing cells by homologous targeting and adhesive interaction. Further in vivo results confirmed that this biomimetic nanoplatform had extended circulation and remarkable tumor-targeting capability, and the PDC NPs effectively suppressed the progression of CNE-2 tumors by systemic administration. This CCM-shielded biomimetic NP displayed a minimalist paradigm nanoplatform for precise NPC therapy, and the strategy of CCM-shielded biomimetic drug delivery system (DDS) has great potential for extensive cancer active-targeting therapy.


Biomimetic Materials , Cell Membrane , Doxorubicin , Nanoparticles , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Nanoparticles/chemistry , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/drug effects , Animals , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Dendrimers/chemistry , Mice , Cell Line, Tumor , Drug Delivery Systems , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Cell Proliferation/drug effects , Mice, Nude , Mice, Inbred BALB C , Biomimetics , Particle Size
16.
Nanotechnology ; 35(30)2024 May 07.
Article En | MEDLINE | ID: mdl-38636478

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid plaques in the brain. The toxicity of amyloid to neuronal cell surfaces arises from interactions between small intermediate aggregates, namely amyloid oligomers, and the cell membrane. The nature of these interactions changes with age and disease progression. In our previous work, we demonstrated that both membrane composition and nanoscale structure play crucial roles in amyloid toxicity, and that membrane models mimicking healthy neuron were less affected by amyloid than model membranes mimicking AD neuronal membranes. This understanding introduces the possibility of modifying membrane properties with membrane-active molecules, such as melatonin, to protect them from amyloid-induced damage. In this study, we employed atomic force microscopy and localized surface plasmon resonance to investigate the protective effects of melatonin. We utilized synthetic lipid membranes that mimic the neuronal cellular membrane at various stages of AD and explored their interactions with amyloid-ß(1-42) in the presence of melatonin. Our findings reveal that the early diseased membrane model is particularly vulnerable to amyloid binding and subsequent damage. However, melatonin exerts its most potent protective effect on this early-stage membrane. These results suggest that melatonin could act at the membrane level to alleviate amyloid toxicity, offering the most protection during the initial stages of AD.


Amyloid beta-Peptides , Melatonin , Microscopy, Atomic Force , Surface Plasmon Resonance , Melatonin/pharmacology , Melatonin/chemistry , Microscopy, Atomic Force/methods , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Lipid Bilayers/chemistry , Alzheimer Disease/metabolism , Humans , Cell Membrane/metabolism , Cell Membrane/drug effects , Cell Membrane/chemistry
17.
Nat Commun ; 15(1): 3437, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653755

Phytoalexin sakuranetin functions in resistance against rice blast. However, the mechanisms underlying the effects of sakuranetin remains elusive. Here, we report that rice lines expressing resistance (R) genes were found to contain high levels of sakuranetin, which correlates with attenuated endocytic trafficking of plasma membrane (PM) proteins. Exogenous and endogenous sakuranetin attenuates the endocytosis of various PM proteins and the fungal effector PWL2. Moreover, accumulation of the avirulence protein AvrCO39, resulting from uptake into rice cells by Magnaporthe oryzae, was reduced following treatment with sakuranetin. Pharmacological manipulation of clathrin-mediated endocytic (CME) suggests that this pathway is targeted by sakuranetin. Indeed, attenuation of CME by sakuranetin is sufficient to convey resistance against rice blast. Our data reveals a mechanism of rice against M. oryzae by increasing sakuranetin levels and repressing the CME of pathogen effectors, which is distinct from the action of many R genes that mainly function by modulating transcription.


Ascomycota , Disease Resistance , Endocytosis , Flavonoids , Oryza , Phytoalexins , Plant Diseases , Plant Proteins , Oryza/microbiology , Oryza/metabolism , Oryza/drug effects , Oryza/genetics , Plant Diseases/microbiology , Endocytosis/drug effects , Disease Resistance/genetics , Disease Resistance/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Sesquiterpenes/pharmacology , Sesquiterpenes/metabolism , Gene Expression Regulation, Plant/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects , Plants, Genetically Modified , Fungal Proteins/metabolism , Fungal Proteins/genetics
18.
Nat Commun ; 15(1): 3424, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654023

Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral ß3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.


Anti-Bacterial Agents , Cell Membrane , Molecular Dynamics Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Membrane/drug effects , Lipopolysaccharides/pharmacology , Microbial Sensitivity Tests , Peptides/chemistry , Peptides/pharmacology , Microscopy, Electron , Gram-Negative Bacteria/drug effects , Escherichia coli/drug effects
19.
Nat Commun ; 15(1): 3521, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664456

Recently, a novel cyclo-heptapeptide composed of alternating D,L-amino acids and a unique thiazolidine heterocycle, called lugdunin, was discovered, which is produced by the nasal and skin commensal Staphylococcus lugdunensis. Lugdunin displays potent antimicrobial activity against a broad spectrum of Gram-positive bacteria, including challenging-to-treat methicillin-resistant Staphylococcus aureus (MRSA). Lugdunin specifically inhibits target bacteria by dissipating their membrane potential. However, the precise mode of action of this new class of fibupeptides remains largely elusive. Here, we disclose the mechanism by which lugdunin rapidly destabilizes the bacterial membrane potential using an in vitro approach. The peptide strongly partitions into lipid compositions resembling Gram-positive bacterial membranes but less in those harboring the eukaryotic membrane component cholesterol. Upon insertion, lugdunin forms hydrogen-bonded antiparallel ß-sheets by the formation of peptide nanotubes, as demonstrated by ATR-FTIR spectroscopy and molecular dynamics simulations. These hydrophilic nanotubes filled with a water wire facilitate not only the translocation of protons but also of monovalent cations as demonstrated by voltage-clamp experiments on black lipid membranes. Collectively, our results provide evidence that the natural fibupeptide lugdunin acts as a peptidic channel that is spontaneously formed by an intricate stacking mechanism, leading to the dissipation of a bacterial cell's membrane potential.


Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/drug effects , Molecular Dynamics Simulation , Water/chemistry , Membrane Potentials/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Staphylococcus lugdunensis/drug effects , Staphylococcus lugdunensis/chemistry , Staphylococcus lugdunensis/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Spectroscopy, Fourier Transform Infrared , Microbial Sensitivity Tests , Nanotubes/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology
20.
Biomed Pharmacother ; 174: 116581, 2024 May.
Article En | MEDLINE | ID: mdl-38636394

Naringenin is a flavonoid found in many fruits and herbs, most notably in grapefruits. In recent years, this compound and its derivatives have been of great interest due to their high biological activity, including fungicidal and bactericidal effects, also in relation to multidrug-resistant bacteria. Membrane interactions of naringenin oxime (NO) and its 7-O-alkyl (7-alkoxy) derivatives, such as methyl (7MENO), ethyl (7ETNO), isopropyl (7IPNO), n-butyl (7BUNO) and n-pentyl (7PENO) were studied. Thermotropic properties of model membranes were investigated via differential scanning calorimetry (DSC), the influence on lipid raft mimicking giant unilamellar vesicles (GUVs) via fluorescence microscopy, and membrane permeability via measuring calcein leakage from liposomes. Molecular calculations supplemented the study. The influence of naringenin oximes on two strains of multidrug resistant bacteria: Staphylococcus aureus KJ and Enterococcus faecalis 37VRE was also investigated. In DSC studies all compounds reduced the temperature and enthalpy of main phase transition and caused disappearing of the pretransition. NO was the least active. The reduction in the area of surface domains in GUVs was observed for NO. Compounds NO and 7BUNO resulted in very low secretion of calcein from liposomes (permeability < 3 %). The highest results were observed for 7MENO (88.4 %) and 7IPNO (78.5 %). When bacterial membrane permeability was investigated all compounds caused significant release of propidium iodide from S. aureus (31.6-87.0 % for concentration 128 µg/mL). In the case of E. faecalis, 7ETNO (75.7 %) and NO (28.8 %) were the most active. The rest of the tested compounds showed less activity (permeability < 13.9 %). The strong evidence was observed that antibacterial activity of the tested compounds may be associated with their interaction with bacterial membrane.


Cell Membrane , Flavanones , Oximes , Staphylococcus aureus , Flavanones/pharmacology , Flavanones/chemistry , Oximes/pharmacology , Oximes/chemistry , Staphylococcus aureus/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Enterococcus faecalis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Unilamellar Liposomes/metabolism , Unilamellar Liposomes/chemistry , Calorimetry, Differential Scanning , Cell Membrane Permeability/drug effects , Microbial Sensitivity Tests
...